منابع مشابه
Structure and electronic properties of single–walled zigzag BN and B3C2N3 nanotubes using first-principles methods
The structure and the electronic properties of single-walled zigzag BN and B3C2N3 nanotubes (n, 0; n=4–10) were investigated using first-principles calculations based on a density functional theory. A plane–wave basis set with periodic boundary conditions in conjunction with Vanderbilt ultrasoft pseudo-potential was employed. The energy gap of ZB3C<su...
متن کاملStructure and electronic properties of single–walled zigzag BN and B3C2N3 nanotubes using first-principles methods
The structure and the electronic properties of single-walled zigzag BN and B3C2N3 nanotubes (n, 0; n=4–10) were investigated using first-principles calculations based on a density functional theory. A plane–wave basis set with periodic boundary conditions in conjunction with Vanderbilt ultrasoft pseudo-potential was employed. The energy gap of ZB3C<su...
متن کاملDiscovering materials with first-principles computational methods
Predicting the arrangement of atoms in materials is of fundamental importance for the discovery and design of new materials. The discovery and development of stronger, cheaper, lighter, etc., functional materials can help to extend the steady progress of technology to which we have become accustomed, and to enable future technologies. It is increasingly being recognised that computational model...
متن کاملstructure and electronic properties of single–walled zigzag bn and b3c2n3 nanotubes using first-principles methods
the structure and the electronic properties of single-walled zigzag bn and b3c2n3 nanotubes (n, 0; n=4–10) were investigated using first-principles calculations based on a density functional theory. a plane–wave basis set with periodic boundary conditions in conjunction with vanderbilt ultrasoft pseudo-potential was employed. the energy gap of zb3c2n3nts was calculated and compared with the cor...
متن کاملA Python interface to CASTEP
This report documents a successful pilot project and feasibility study for adding a Python interface to the CASTEP first principles materials modelling code. Such an interface will allow the growing Python community within the scientific computing field access to CASTEP functionality, without the requirement of learning Fortran. To achieve this, changes have been made to the CASTEP source code ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Zeitschrift für Kristallographie - Crystalline Materials
سال: 2005
ISSN: 2196-7105,2194-4946
DOI: 10.1524/zkri.220.5.567.65075